AsciiSpec Specification

Numberfour AG

Table of Contents

.. iii
B NI o 1T o O 4 = L] 1= 1
2. Definition BIOCK DOCUMENTALIONttt ettt ettt et e et et et et et et e e e e e e e e as 2
T =T [T =T g T= o1 (ST =] oo QN 3

G0 O | - 1T 1 PP 3

Z N L] I T Q1 - Tod £ R PP 4
L T U L =i (=T 1 4

L = o 1] o] = N 4

S 1T o =TT s =l 1Y = Tod £ R PP 6
L I o 1o U= o o N 6

Lo 11 oI @A 1/ = o] PP 7
L L I - 11 (] 1 PP 7

A a1 TR TSI = g T 0 2= T YT o 8
4% O o o U= o o N 8

A7 == 1111 0] [8

8. Math InClude DOCUMENTALION ...ttt et et et et et et et e e et e e et et e e et et e e et e e e aneaans 10
9. Inline Source LINK (ST Cl MK) IMIBCTO.ttt ettt ettt et et ettt e e e e et e e e e e e et ettt ettt e e e e eaens 11
LS o 1o U= o o I PP 11

9.1.1. Generated DOCUMENTALION DIFECIONY ...ttt ettt ettt e e et e et e ettt et ettt e e e e aeeens 11

LS S {= o T 171 (o] VA o o= i {o] o KN 11

10. EXtended INCIUAE MACTO ...t ettt ettt et e et ettt ettt e ettt e e et e et e a e et 13
O IS O O T o S] 11 T [- Vo o 13

O T2 - o 1 [ol (1 o [/= T o 13

O R TR = o S [ol 11 o [/= T o 13

I C =T Tl 2= =To N o] T £ PP 14
S Yoo = P 14

B €T =T LIS 1 Ut (U = PP 14

R T ST o 1= Tt = T O g F= T = Tox 1= £ 15

12. Partially QUalifIed NAMES (PN S) ...ttt ettt ettt ettt ettt et e et e ettt et e 16

13. Special VariableS 1N ASCISPECttt ettt ettt et ettt ettt et et e et e et 17
13.1. The {find} Vari@ble. e e e et e e et e e e e et e e e e 17

R 00 A 11 e Yo [Tox 1T T o PP 17

R 700 1T T = 17

G TR BT =T 1 1 o ok OO 17

R T T Vg 1T = g o I =1 o] = P 17

13.1.5. Using {fiNd} 0N GitHUD. ..o e e 18

W =71 o] Yo = 0 1 N 19

The following is the specification for AsciiSpec, a toolchain based on Asciidoctor with custom modifications for task management, math support,
API| documentation and more.

http://asciidoctor.org/

Chapter 1. AsciiSpec Cheat Sheet

Name

Source

Inline Task Macro

Inline BibTeX Macro

task: taskl d[]

cite:[ref,ref2(optional Page)]

bi bl i ography: : []

Inline Cwiki Macro

Definition Block

cwi ki:path[title=Hyperlinked Text]

cw ki : pagel D[title=Hyperlinked Text]

.title
[def]

My Definition

Requirements Block

.This is the title
[req, i d=RSL- 3, ver si on=1]

My Super Requirement

Extended Include

Inline Source Link

include::{find}nmyfile.adoc[]

srcl nk: [Dat aLi st #<si zes]

Inline Math mat h: E=nt/2[]
$C=2 \Pi r$
Math Block [mat h]
++++
\sum {{i=1}"n i = {n(n+1l)\over{2}}
++++

Chapter 2. Definition Block Documentation

Usage
.definitionTitle
[def]

The content of the definition

Attributes
» definitionTitle (required): An anchor is derived from the definition title and embedded at the beginning of the rendered output.
» delimiter: Lines containing only two hyphens - - delimit the block. This is required if the block contains empty lines or nested formatting.

Example

.Definition Site Structural Typing
[def]

If atype T is declared as structural at its definition, _T.defStructural_ is true.

1. The structurally defined type cannot be used on the right hand side of the "instanceof"”
2. Atype Xis a subtype of a structurally defined type T...

Furthernore. ..

Result

Definition: Definition Site Structural Typing

If a type T is declared as structural at its definition, T.defStructural is true.

1. The structurally defined type cannot be used on the right hand side of the i nst anceof

2. Atype X is a subtype of a structurally defined type T...

Furthermore...

Chapter 3. Requirements Block

Usage
.title
[req,id=RSL- 3, version=1]

Contents of the requirenent

Attributes
« title (required): An anchor is derived from the requirement title and embedded at the beginning of the rendered output.
 |D: (required) The ID in the form <Prefix>-<Number>, used to generate an anchor

e version: (required) value is a non-negative integer.

Omitting any of the above attributes will print an error to the console and insert a warning text in the generated document.
* delimiter: Lines containing only two hyphens - - delimit the block. This is required if the block contains empty lines
or nested formatting.

3.1. ID Pattern

The purpose of the <Prefi x>- <Nunber > ID is to ensure that Requirements are both unique and easily referenceable. Currently, the ID may
be any string, but should conform to the following conventions:

<Prefix>:
R (requirement) followed by the project prefix (i.e. SL for stdlib)

<Number>:
The requirement number, currently not validated. A validation stage for requirement IDs (detecting duplicates, for instance) is planned.

Example
The following example demonstrates how to document Requirement #3 for stdlib Version 1;

.This is the title
[req,id=RSL-3, version=1]

My Super Requirenent

Req. RSL-3: This is the title (ver. 1)

My Super Requirement

Chapter 4. Inline Task Macro

Usage
t ask: [1

The inline task macro creates hyperlinks to Jira task management and GitHub issue-tracking systems.

Attributes

« target: The project prefix followed by a hyphen and the task number or ID (e.g. AS-23).

4.1. URL Pattern

Specifying which repository to link to is done by adding a URL pattern to the config file in the following format:
:task_def _<Prefix> <Name>; <Descri pti on>; <URL- Pattern>; <l con>; <Text Pat t er ns>

Example:

:task_def AS-: G tHub; Ascii Spec Bugs; https://github. com Nunber Four/asciispec/issues/{TASK | D}; i mages/i cons/ gi t hub. png; AS-{ TASK_| D}
:task_def JIRA-: Jira;M Jira Board; https://jira.myorg.conm browse/Jl RA-{TASK | D}; i nages/icons/jira.png; Jl RA-{ TASK_| D}

<Prefix>
The unique prefix by which this repository is identified (AS- in task: AS-40[]).

<Name>
The name of the repository.

<Description>
A description of the repository, used to generated a tooltip.

<URL-Pattern>
The pattern to generate in the links - can contain the following placeholders:

« {TASK | D} : The suffix of the macro target (40 in task: AS-40[]).

<lcon>
The relative path to an image used as an icon for the repository.

<Text-Pattern>
The text pattern to match to inline task macros in the AsciiDoc source - can also contain the { TASK | D} placeholder.

4.2. Examples

Jira Task:
AsciiDoc was decided as a suitable syntax for documentation t ask: JI RA-35[] .

AsciiDoc was decided as a suitable syntax for documentation.

[YJ\RA—SS

Github Issue:

A bug has already t ask: ASC-35[] been filed...

https://github.numberfour.eu/NumberFour/asciispec/blob/master/docs/userguide.adoc#configuration-file
https://jira.myorg.com/browse/JIRA-35

Inline Task Macro

A bug has already been filed...

[OAs-as

https://github.com/NumberFour/asciispec/issues/35

Chapter 5. Inline BibTex Macro

Load references from a BibTeX file.

Usage:

cite:[ref (pages)]

bi bli ography::[]

Attributes:

« ref (required): At least one reference must be stated e.g. ECMA15a . Multiple references may be added by separating with commas e.g.
ECVAl5a, Canni ng89a .

* pages (optional): The specific pages of a reference.
Bibliography:

The bibliography macro can be added at any part of the source document, but the convention for block macros is to have empty lines before
and after as follows:

...end of previous block

bi bl i ography: :[]

Beginning of next block...

Examples
Source Output
cbib-file: ../biblio.bib Two of my favourite books are the ECMAScript Language
]] Specification and F-bounded polymorphism [ECMA15a];

Two of my favourite books are the ECMAScript [Canning89al.

Language Specification and F-bounded

polymorphism ci t e: [ECMA15a, Canni ng89a] . Thanks for reading, be sure to read my biblio.

Thanks for reading, be sure to check my biblio. Bibliography

[app_end? al ECMA. (2015). ECMAScript 2015 Language Specification. Retrieved
i o from http://www.ecma-international.org/publications/files/ECMA-ST/
bi bl i ography: : [] Ecma-262.pdf

Canning, Peter and Cook, William and Hill, Walter and Olthoff,
Walter and Mitchell, John C.. (1989). F-bounded Polymorphism
for Object-oriented Programming. Retrieved from http://
doi.acm.org/10.1145/99370.99392

5.1. Configuration

The following line should be added to the Configuration File:
:bib-file: <path>

Attributes:
<pat h> can be an absolute path or a path relative to the location of the adoc file being processed. In absence of this option, or if the file

denoted by <pat h> cannot be found, the processor will try to find a . bi b file in the directory tree beginning at the location of the adoc
file recursively.

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://doi.acm.org/10.1145/99370.99392
http://doi.acm.org/10.1145/99370.99392
https://github.numberfour.eu/NumberFour/asciispec/blob/master/docs/examples/config.adoc

Chapter 6. Inline Cwiki Macro

Usage
cwi ki : ["cwikiTitle"]
The Inline Cwiki Macro creates hyperlinks to Confluence wiki entries. The string 'titte=" and the quotation marks are optional.

Attributes

 target: Used to define which Confluence URL to link to. Can be one of the following:

1. pagelD (e.g. 56885484).
2. path (e.g. BR/ Conti nuous+l nt egration).

» cwikiTitle: (optional) The title that will be displayed as an anchor in the generated hyperlink. If no title is declared, the t ar get will be
used instead.

6.1. URL Pattern

With most Confluence pages, the URL path is derived from the page title, like so:

confl uence. nunber f our . eu/ di spl ay/ N4/ Cont i nuous+| nt egrati on

Not all Confluence pages have associated paths and will otherwise have a page ID as with the following:
confl uence. nunber f our . eu/ pages/ vi ewpage. act i on?pagel d=56885484

A target that contains only numbers (e.g., cwi ki : 1234[]) will be interpreted as a page ID rather than a page path. To configure the Inline Cwiki
Macro to resolve to correct targets, the format of the URL pattern should be set in the Configuration File as follows:

ccwi ki _def: <Path-URL-Pattern>; <I D- URL- Pattern>; <l con>; <Titl e-Pattern>

<Path-URL-Pattern>
Used to generate the target URL when a path is specified - can contain the placeholder { PATH} .

<ID-URL-Pattern>
Used to generate the link target URL when a page ID is specified - can contain the placeholder { PAGE_I D} .

<lcon>
A path to an icon, e.g., i mages/ i cons/ confl uence. png .

<Title-Pattern>
the pattern used to generate the link’s text - can contain the placeholder { Tl TLE} .

Examples
Documented at cwiki:BR/Continuous+integration[title=Continuous Integration]...

Documented at ¥ Confluence entry:Continuous Integration...

See the cwiki:56885484["MacOS Devices wiki entry"] to connect to...

See the ¥Confluence entry:MacOS Devices wiki entry to connect to...

https://github.numberfour.eu/NumberFour/asciispec/blob/master/docs/examples/config.adoc
https://confluence.(myorg).com/display/BR/Continuous+Integration
https://confluence.(myorg).com/pages/viewpage.action?pageId=56885484

Chapter 7. Inline Math (mat h) Macro

An inline macro for rendering LaTeX math expressions using MathML. The macro supports two syntaxes: The asciidoctor syntax and the LaTeX
shorthand syntax.

Usage:
mat h: EXPRESSI ON[]

$EXPRESS| ON$

Attributes:

» EXPRESSION (required): A LaTeX math expression that does not contain $ characters. Touse a $ character within a math expression,
it must be escaped using a backslash.

Attention:
The math macro must be specified in a single line. Line breaks within this macro are not supported.

Examples

Source Output

)) L D
Fre is o o ek fams [ios Here is some text with famous inline math formulae such as E = mc

math fornul ae such as math: = ncA2[| and C=2[1r.
and $C=2 \Pi r$.

7.1. Configuration

No configuration required.
It is possible to use the mathinclude::[] macro to include custom LaTeX commands.
[Error: Unable to load LaTeX commands from ‘math.tex’: File commands could not be parsed.] = Math Block Documentation
Description
The math block is used to write blocks of mathematical formulae.
e delimiter: Lines containing four plus symbols ++++ delimit the block. This is required if the block contains empty lines or nested formatting.

Usage

[mat h]

++++

Sone fornul ae.
++++

Example

[mat h]

++++

\sum{ “1}”n i = {n(n+l)\over{2}}
++++

7.2. Example

The above source will create the following output:

n
Zi_n(n+1)
- 2

=1

Inline Math (mat h) Macro

It is possible to use the mathinclude::[] macro to include custom LaTeX commands.

Chapter 8. Math Include Documentation

Usage
mat hi ncl ude: : sone/fil e/ path.tex[]
mat hi ncl ude: : {find}some_other_file.tex[]

Description
The math include caninclude .tex files containing custom LaTeX commands to be used in mathematical expressions. It is used in

conjunction with inline math and math block. Multiple math include directives are appended, so it is possible to include several files. All math
include directives are processed before the inline math expressions and the math blocks are processed.

The include path may contain the {fi nd} variable. In either case, the processor will search the included file by looking at each parent folder
of the indicated path.

[mat h]

++++

Some maths that can use the LaTeX commands fromthe included file.
++++

10

Chapter 9. Inline Source Link (srcl nk)
Macro

An inline macro for generating hyperlinks from program elements such as types or methods to their source code in the code management system
(i.e. GitHub). This macro is used extensively by the Eclipse export wizard.

Usage:
srcl nk: PQN[| abel]

Attributes:
* PQN (required): The partially qualified name. Specifies the code element that is linked. See PQN Definition for the PQN'’s syntax.

« label (optional): The label of the link. The label can start/end with markups e.g. for monospace.
In case the PQN or the label contain special characters, the AsciiDoc pass macro (++) can be used to escape PQN and/or label.

Attention:
The srcink macro must be specified in a single line. Line breaks within this macro are not supported.

Examples
Source Output
The following source link of the field accessor si ze() contains a The following source link of the field accessor si ze() contains a
complete PQN. The link’s label is the methods signature. complete PQN. The link’s label is the methods signature.

ublic get sizes(): int[].
srcl nk: ++stdl i b_api : packages: P g 0 I

eu. nyorg. stdlib. nodel . base. api :
src/ proj ect/ nodel / col | ecti ons/ Dat aLi st :
Dat alLi st #<si zes++[* ~ ++publ i c get size(): [1++°].

9.1. Configuration

The following commands should be added to the Configuration File:

9.1.1. Generated Documentation Directory

The gen_adoc variable specifies the directory which contains all generated documentation. It has to be set to parse the i ndex. i dx file and
the generated adoc files, as well.

Variable:
: gen_adoc: <pat h>
Attributes:

e <pat h> can be an absolute or relative path to the location of the generated adoc documentation directory. Usually, its name is
gen_adoc .

Example:
: gen_adoc: datal/doc/ gen_adoc

9.1.2. Repository Location

The repository location command specifies one repository, that is, its name, description and url. The url is later used to generate complete urls
which point to specific source code files of the repository. The repository location command can be used multiple times to add multiple repository
locations. It must be used at least once.

11

pqn.xml#PQN-def
https://github.myorg.com/api/blob/master/packages/eu.myorg.stdlib.model.base.api/src/project/model/collections/DataList.n4jsd#L250
https://github.com/NumberFour/asciispec/blob/master/docs/examples/config.adoc

Inline Source Link (srcl nk) Macro

Variable:
:srclnk_repo_def: <repoNane>; <description>; <urlPrefix>

Attributes:
e <| D> is the unique identifier of the variable. It has no further semantics.
e <url| Nanme> is the name of the repository. It can be referred from the PQN.
e <descri ption> is a short description of the repository.

» <url Prefix> is a prefix of every url that navigates to a source code file within the repository. It contains the placeholders CM5_PATH
and LI NE_NO which later will be replaced by a specific file and line number, respectively.

Example:
:srclnk_repo_def: stdlib_api; Standard |ib API; https://github.conm Nunber Four/asciispec/ api/bl ob/
mast er / { CMS_PATH} #L{ LI NE_NC}

12

Chapter 10. Extended Include Macro

Asciidoctor already provides an include macro which can still be used as usual. However, if the include macro starts with specific variables after
the double colon, a special handling of the include macro is activated. As of now, only one specific variable exists, which is {find} as in
i ncl ude: : {find}nyFile[] . Despite having some special handling when using specific variables, the usual behaviour of the built-in include
is still preserved and all its attributes can still be used. The following documentation focuses on the include macro with activated special handling.

10.1. {fi nd} Include Macro

The general idea of the {fi nd} variable in an include macro is to search the given file and replace the variable with the path to the matched
file. In short, it behaves the same like the {fi nd} variable (see: Special Variables - Find), but enables two additional attributes which can be
given in the squared brackets of the include macro.

Usage:
include::{find} Target[Attri butes]
With:

» Target (required): The name of the file whose contents shall be included. The file name can contain directories. The extension . adoc
can be omitted.

» Attributes (optional):

FILE_ONCE: Includes the same file only once.
TARGET_ONCE (alias ONCE): Includes the same target only once.
(all other include attributes such as 'lines")
Warnings and Errors:
e Error: File Not Found Is issued in case the given target could not be found.

e Error: Circular Dependency Is issued in case the included files depend on each other. The last file which would create a circular
dependency cycle is omitted. This error is only issued if all include macros of the cycle use the {fi nd} macro.

* Warning: Cant Find Circular Dependencies Is issued in case one or more includes do not use the {fi nd} macro. Despite this issue,
circular dependencies can still be found if all of the causing files are included using the {fi nd} macro.

* Warning: Multiple File Matches Is issued in case the given target is found at multiple locations. The first match is chosen to be included.

* Warning: Inconsistent Use of Attributes Is issued in case one of the attributes is used inconsistently. The TARGET_ONCE attribute
is supposed to be used at none or at all includes with the same target. The FILE_ONCE attribute is supposed to be used at none or at
all includes matching the same file.

Example:
The following line includes the file fil e. adoc in the subdir dir . The location of that file is found by the {fi nd} directive (see: ??7?).

The attribute ONCE is the shorthand form for TARGET _ONCE .
include::{find}dir/file.adoc[ONCE]
10.2. {api } Include Macro

Includes generated adoc (of StdLib API) text which previously was generated by the exporter wizard. Uses a PQN to reference the section which
is to be included. (tbd)

10.3. {src} Include Macro

Includes source code (of StdLib API) from GitHub. Uses a PQN to reference the source element (e.g. a method) which is to be included. (tbd)

13

Chapter 11. Generated Anchors

The N4JS-N4 project eu.numberfour.n4js.jsdoc2spec generates adoc files for the documentation. These adoc files are used to create an online
reference and a standalone PDF file. Moreover, the generated documentation is included into the stdlib API documentation. This stdlib API
document merges both generated and manual written documentation.

When including generated adoc content into manual written documents, we might want to reference sections that are located within the included
contents. Since these references rely on generated anchors used in the generated contents, an understanding of the structure of these anchors
would be helpful.

11.1. Scope

Anchors in the generated documentation are created for every property of a Class or Interface. For example, for every property such as datafields
or methods, a section is generated that can be referenced using a generated anchor. The following excerpt shows the beginning of the generated
contents of the module n4.lang.Comparable.

= Modul e n4. | ang. Conpar abl e
== Interface Conparable

Any class that supports equality checks should inplenent this interface.
Conparable is not simlar to Java's conparable. In N4JS, it only provides the equals nethod.

[[sec: spec_n4. | ang. Conpar abl e. Conpar abl e. equal s]]
[rol e=nenber doc]
=== ++Met hod equal s++

[. I anguage- n4j s]

==== Signature

srcl nk: ++stdli b_api : packages: eu. nunber f our. n4j s. base. api : src/ n4j s/ n4/ | ang/ Conpar abl e: Conpar abl e#equal s++[" " ++publ i ¢ abstract equal s(other:
any): bool ean++ "]

==== Descri ption
returns true if the provided entity is equal to the current object by |oose equality rules.

O her may be null, in that case, false is to be returned.

The example above contains one generated anchor: sec: spec_n4. | ang. Conpar abl e. Conpar abl e. equal s whichreferencesthe equal s
method in the interface Conpar abl e in the module n4. | ang. Conpar abl e .

11.2. General Structure

Generally, the structure of anchors is similar to the structure of PQNs. However, the anchor structure is shorter and of defined length:

sec: spec_<nodul e><t ype><del i ni t er ><pr operty>

module
specifies the name of a module

type
specifies the name of a type, e.g. a class in the module

delimiter
specifies the delimiter between type and property

property
specifies the name of one property in the type

The delimiters in anchors differ from the PQN definition. PQNs use strings for example like # or @ to access non static properties or static
setters. Since these strings contains characters which are permitted in adoc anchors, they are replaced as follows:

14

Generated Anchors

Delimiters
Name PQN Anchor
non-static property #
non-static getter #< .getter.
non-static setter #> .setter.
static property @ .static.
static getter @< .static.getter.
static setter @> .static.setter.

Example:

sec:spec_n4.lang. | dentifiable.ldentifiable.getter.id

11.3. Special Characters

Special characters occur in anchors since property names can contain any characters. In addition, the iterator symbol, which is used for iterators,
often contains the # symbol. Consequently, anchors have to escape these characters. This is done by replacing the special character with a colon
and its corresponding unicode number. For example, the property name #i t er at or is transformed to : 23i t er at or . The resulting complete
anchor is: sec: spec_n4. | ang. Del egat e. Del egate.: 23iterator .

15

Chapter 12. Partially Qualified Names (PQNS)

A partially qualified name is a string that uniquely identifies a source element. The following types of source elements can be specified with a PQN:

» properties of types like classes or interfaces,

« top level elements such as functions and variables.

In its longest form, a PQN structure can look like this:
<reposi t ory>: <reposi t ory- pat h>: <proj ect >: <sr c-f ol der >/ <npdul e>: <cl assi fi er >#<nmenber >

However, the goal of PQNs is to be able to identify source elements with very short names as long as they are still unique. Therefore, if a source
repository contains only one class with the name "PathSelector”, then the string "PathSelector" should also be a PQN of that class. If, however,
a repository contains another class of the same name at another location, then it is necessary to add further information to the name, beginning
at its end. Let’s assume that two different modules contain a class with the name Pat hSel ect or . In that case, it is necessary to include the
module in the PQNs of the classes, e.g. a/ b/ nodul el: Pat hSel ect or and a/ ¢/ nodul e2: Pat hSel ect or .

The syntax of a PQN is defined by the following BNF specifications:

PQN 1= (00CC
REPCS| TORY_NANE ": ") 2
REPQCS| TORY_PATH ": ") 2
PROJECT_NANE ":")?
SRC_FOLDER SPEC "/")?
MODULE_SPEC ": ") ?

LI NKABLE_ELEMENT_SPEC

LI NKABLE_ELEMENT_SPEC ::= TOPLEVEL_ELEMENT_SPEC | LI NKABLE_MEMBER SPEC

TOPLEVEL_ELEMENT_SPEC : : = CLASSI FI ER_NAVE | FUNCTI ON_NAVE

LI NKABLE_MEMBER SPEC ::= ((CLASSI FI ER_NAVE)? DELIM TER)? MEMBER NAMVE
DELI M TER s | e | s | '@ | @ | @
REPGCS| TORY_PATH 1= PATH

SRC_FOLDER SPEC ;1= PATH

MODULE_SPEC 1= PATH

PATH 1= PATH ELEMENT ("/" PATH_ELENENT)*
PATH_ELENENT = CHAR®

REPCS| TORY_NAMVE = CHAR®

PROJECT_NANE 1= CHAR®

CLASSI FI ER_NAMVE = CHAR®

MEMBER_NAVE 1= CHAR®

Note the different versions of the DELIMITER to differentiate between static and non-static members, and also to indicate getters and setters. To
identify non-static data fields or methods of a class (or interface), a # is used. However, N4JS allows for multiple members to have the same
name, e.g. there can be a static member with the same name as an instance member, or a getter/setter pair sharing the same name. In such
cases, the member is differentiated using the following DELIMITERSs: pass: [#<+ indicates a getter, #> indicates a setter, @ indicates a static
member, @ indicates a static getter, and @ indicates a static setter.

Note that the PQN is strictly structured from right to left. This means that both, DELIMITER and CLASSIFIER_NAME, must be specified when the
MODULE_SPEC is specified, although the BNF indicates otherwise.

16

Chapter 13. Special Variables in Asciispec

Some macros of Asciispec implement special variables which can be used by AsciiDoc authors. These special variables are readonly.
13.1. The {fi nd} Variable

13.1.1. Introduction

There exist several use cases for adoc documents. They are used to generate html pdf files, or they are written manually. Moreover, some
documents consist of more than one adoc file and thus rely on including other adoc documents. In the latter case, also the included documents
can be translated separately to generate a PDF for a single chapter only for example.

Several macros such as include, image, cross reference, or other custom macros rely on paths to work appropriately. Since we have different
use cases mentioned above, we need to specify paths relative to the including document. As an example, the adoc file doc. adoc specifies the
location of the bibliography using the directive : bi b-file: ../biblio.bib. This path can not always be found when the doc.adoc file is
translated both on its own and included from onother files.

The {find} variable provides the means to specify files relative to the adoc file no matter from where this adoc file was included.
13.1.2. Usage
Syntax:

{find} Tar get

Target:
an arbitrary file which can include a path

Example 1:
:nyl mageVar: {find}path/to/picture.png

Example 2:
i mage: : {fi nd}path/to/picture. png[]

13.1.3. Semantics

During the preprocessing of the document, all find variables are replaced by a concrete path to the targeted file. This path is relative to the directory
of the base/master file. In order to replace the target, a search is performed which can have three outcomes:

* No file was found, which results in an error.
¢ One file was found.

» Multiple files were found, which results in a warning.

AsciiSpec

The search is performed in several directories. It starts in the directory of the including file and walks up the folder structure. In each of these
directories, the target file is searched. All matches are collected and the first is returned. The search algorithm never descends into a subfolder
(except if the target file specifies subfolders).

13.1.4. Warnings and Errors

e Error: File Not Found Is issued in case the given target could not be found.

e Warning: Multiple File Matches Is issued in case the given target is found at multiple locations. The first match is chosen to be included.

17

Special Variables in Asciispec

13.1.5. Using {fi nd} on GitHub

In case the an adoc file should also be able to be viewed on GitHub directly, the {fi nd} variables can not be resolved by GitHub. Consequently,
the adoc file might not be displayed correctly, especially with respect to images included via i mage: : {find} pi cture. png[] .

As a solution, the adoc file should define the find variable to an empty string using the following line:
:find:

Using the line above, the image include resolves to i nage: : pi cture. png[] .

18

Appendix A. Bibliography

	AsciiSpec Specification
	Table of Contents
	
	Chapter 1. AsciiSpec Cheat Sheet
	Chapter 2. Definition Block Documentation
	Chapter 3. Requirements Block
	3.1. ID Pattern

	Chapter 4. Inline Task Macro
	4.1. URL Pattern
	4.2. Examples

	Chapter 5. Inline BibTex Macro
	5.1. Configuration

	Chapter 6. Inline Cwiki Macro
	6.1. URL Pattern

	Chapter 7. Inline Math (math) Macro
	7.1. Configuration
	7.2. Example

	Chapter 8. Math Include Documentation
	Chapter 9. Inline Source Link (srclnk) Macro
	9.1. Configuration
	9.1.1. Generated Documentation Directory
	9.1.2. Repository Location

	Chapter 10. Extended Include Macro
	10.1. {find} Include Macro
	10.2. {api} Include Macro
	10.3. {src} Include Macro

	Chapter 11. Generated Anchors
	11.1. Scope
	11.2. General Structure
	11.3. Special Characters

	Chapter 12. Partially Qualified Names (PQNs)
	Chapter 13. Special Variables in Asciispec
	13.1. The {find} Variable
	13.1.1. Introduction
	13.1.2. Usage
	13.1.3. Semantics
	13.1.4. Warnings and Errors
	13.1.5. Using {find} on GitHub

	Appendix A. Bibliography

